preview

Essay BIOS252 Week 3 PowerPhys4 Lab Report 2

Better Essays

LABORATORY REPORT

Activity 4: Generation of Action Potentials
Name:
Instructor:
Date:

PREDICTIONS

1. Exceeding the threshold depolarization at the trigger zone DECREASES the likelihood of generation of action potential.

2. Action potential amplitude: DOES NOT CHANGE with distance

3. Increasing frequency of stimulation to the trigger zone: DOES NOT increase the production of action potentials.

MATERIALS AND METHODS

Experiment 1: Effect of Stimulus Strength on Action Potential Generation

1. Dependent Variable Membrane potential

2. Independent Variable
Stimulus strength (voltage)

3. Controlled Variables
Frequency of stimulation
Type of neuron

Experiment 2: Effect of Frequency of Stimulation on Action Potential …show more content…

Action potentials can occur more frequently as long there is a continued source of stimulation, as long as the relative refractory period has been reached, which in experiment 2 the refractory period was complete.

5. Restate your predictions that were correct and give the data from your experiment that supports them. Restate your predictions that were not correct and correct them, giving the data from your experiment that supports the correction.
1) Exceeding threshold depolarization does not change the likelihood of an action potential being produced, Due to the need for a refractory period this is (all or nothing) In the experiment from 6V-8V in the axon hillock the difference in amplitude went from 30.2 to 30.9 (not a remarkable increase)
2) Amplitude does not change with distance. . From the experiment, the action potential amplitude does NOT change as it propagates down the axon. (The change was small at 0.4, 0.2) 3) Increasing frequency of stimulation of the trigger zone does not increases the production of the action potentials. This goes back to the threshold All or nothing theory.

APPLICATION

1. ECF potassium levels affect resting membrane potential. Hyperkalemia (excessive levels of potassium in the blood) and hypokalemia (abnormally low blood potassium levels) both affect the function of nerves and muscles.

Explain how hyperkalemia will

Get Access