preview

Growth Curve of Serratia marcescens

Better Essays

Experiment 9: Growth curve of Serratia marcescens

Abstract
Bacteria grows by binary fission. The aim of this experiment is to follow the growth of Serratia marcescens in nutrient broth at 37oCby recording the changes in turbidity (cloudiness) by measuring the absorbance of visible light (600 nm) and also to prove that there is an increase in the cell number and not just in mass during the growth. In the experiment we measure the full growth curve of Serratia marcescens by measuring the absorbance at 600nm at every 10 mins. I also determined the viable count at the start and the end of the exponential phase of growth. Using the growth curve I calculated the growth curve and it was 1.2. Using this I found the doubling time which was 34s. …show more content…

(Note, if counting by turbidimetric measurements or microscopic counts, the death phase cannot be observed.). During the death phase, the number of viable cells decreases geometrically (exponentially), essentially the reverse of growth during the log phase.
During the lag phase there is no increase in cell numbers, although the bacteria are synthesizing enzymes present in their environment in preparation for the exponential phase. During the exponential or logarithmic phase, the bacterial population grows at a rate that doubles the population during the generation time. The stationary phase incurs neither an increase nor a decrease in the cell population. The population growth cannot continue at the exponential rate since the nutrient supplies have been depleted and waste products have accumulated. The final phase of the bacterial population growth curve is the death phase, during which more cells die than are replaced by new cells.
The aim of this experiment is to follow the growth of Serratia marcescens in nutrient broth at 37oCby recording the changes in turbidity (cloudiness) by measuring the absorbance of visible light (600 nm) and also to prove that there is an increase in the cell number and not just in mass during the growth.
Methods
Remove foam plug from the inoculate flask and pour it into a cuvette. Incubate it at 37°C and the optical density readings at 600nm every 10-15 mins. Pour into the

Get Access