1.Refrigerator 1 simulates an ideal refrigerator and therefore operates on a Carnot cycle using R-134a as the refrigerant at a flow rate of 1.4 kg/sec. The condensing and evaporating temperatures are 30 °C and -10 °C, respectively. To assess the performance of Refrigerator 1, you must submit the report. of the project with the following information: a) Enthalpies corresponding to the states indicated in the cycle (1, 2, 3 and 4); b) The cooling rate (Q L ); c) The work supplied to the fluid by the compressor;

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

1.Refrigerator 1 simulates an ideal refrigerator and therefore operates on a Carnot cycle using R-134a as the refrigerant at a flow rate of 1.4 kg/sec. The condensing and evaporating temperatures are 30 °C and -10 °C,

respectively. To assess the performance of Refrigerator 1, you must submit the report.

of the project with the following information:

a) Enthalpies corresponding to the states indicated in the cycle (1, 2, 3 and 4);

b) The cooling rate (Q L );

c) The work supplied to the fluid by the compressor;

d) The work generated by the turbine;

e) The condenser heat rejection rate (Q H );

f) The coefficient of performance of the cycle.

Important detail: For the energy balance, make the following considerations:

✓ Permanent regimen;

✓ Kinetic and potential energy variations are negligible;

✓ Compressor and turbine operate adiabatically;

✓ Evaporation and condensation steps are labor-free.

Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY