A child has a mass of 18kg and slides down a height of 2.7m without friction.  the gravitiational energy is equal to zero at ground level.  1) write an expression for the childs total mechanical potential energy E at the top of the slide in terms of the variables given and the acceleration due to gravity g. 2) what is the change in the childs potential energy from the top to the bottom of the slide at ground level (I.e delta U = U ground-U top) 3) what is the childs final speed

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter8: Potential Energy And Conservation Of Energy
Section: Chapter Questions
Problem 23P: A cat’s crinkle ball toy of mass 15 g is thrown straight up with an initial speed of 3 m/s. Assume...
icon
Related questions
Topic Video
Question

A child has a mass of 18kg and slides down a height of 2.7m without friction.  the gravitiational energy is equal to zero at ground level. 

1) write an expression for the childs total mechanical potential energy E at the top of the slide in terms of the variables given and the acceleration due to gravity g.

2) what is the change in the childs potential energy from the top to the bottom of the slide at ground level (I.e delta U = U ground-U top)

3) what is the childs final speed?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Mechanical Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage