A liquid of density 1350 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.83 m/s and the pipe diameter ?1 is 10.9 cm. At Location 2, the pipe diameter ?2 is 17.3 cm. At Location 1, the pipe is Δ?=9.47 m higher than it is at Location 2. Ignoring viscosity, calculate the difference Δ?between the fluid pressure at Location 2 and the fluid pressure at Location 1.

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter15: Fluids
Section: Chapter Questions
Problem 54PQ: Liquid toxic waste with a density of 1752 kg/m3 is flowing through a section of pipe with a radius...
icon
Related questions
Question
100%

A liquid of density 1350 kg/m3 flows steadily through a pipe of varying diameter and height. At Location 1 along the pipe, the flow speed is 9.83 m/s and the pipe diameter ?1 is 10.9 cm. At Location 2, the pipe diameter ?2 is 17.3 cm. At Location 1, the pipe is Δ?=9.47 m higher than it is at Location 2. Ignoring viscosity, calculate the difference Δ?between the fluid pressure at Location 2 and the fluid pressure at Location 1.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Variation of pressure
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning