A spring is used to stop 50kg block moving down a 20 degrees inclined plane. The spring has a constant K= 30KN/M and is held by the cables so that it is initially compressed 50mm. Knowing that the velocity of the package is 2m/s when it is 8m from the spring and assuming the kinetic coefficient of friction between the package and the incline is 0.20. Determine: A. Final kinetic energy B. Maximum additional deformation of spring in bringing the block to rest C. Frictional force

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter7: Dry Friction
Section: Chapter Questions
Problem 7.48P: Find the smallest distance d for which the hook will remain at rest when acted on by the force P....
icon
Related questions
Question
SHOW COMPLETE SOLUTION A spring is used to stop 50kg block moving down a 20 degrees inclined plane. The spring has a constant K= 30KN/M and is held by the cables so that it is initially compressed 50mm. Knowing that the velocity of the package is 2m/s when it is 8m from the spring and assuming the kinetic coefficient of friction between the package and the incline is 0.20. Determine: A. Final kinetic energy B. Maximum additional deformation of spring in bringing the block to rest C. Frictional force
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Design of Mechanical Springs
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L