A square steel bar of side length w = 0.21 m has a thermal conductivity of k = 15.6 J/(s⋅m⋅°C) and is L = 2.7 m long. One end is placed near a blowtorch so that the temperature is T1 = 95° C while the other end rests on a block of ice so that the temperature is a constant T2. a. input an expression for the heat transferred to the cold end of the bar as a function of time using A=w^2 as the cross-sectional area of the bar.  b. how much energy in joules was conducted in 1 hour, assuming t2=0*C c. input an expression for the mass of the water melted in one hour using Q1 from above and Lf in the latent heat of fusion.  mw=

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter4: Numerical Analysis Of Heat Conduction
Section: Chapter Questions
Problem 4.35P
icon
Related questions
Question

A square steel bar of side length w = 0.21 m has a thermal conductivity of k = 15.6 J/(s⋅m⋅°C) and is L = 2.7 m long. One end is placed near a blowtorch so that the temperature is T1 = 95° C while the other end rests on a block of ice so that the temperature is a constant T2.

a. input an expression for the heat transferred to the cold end of the bar as a function of time using A=w^2 as the cross-sectional area of the bar. 

b. how much energy in joules was conducted in 1 hour, assuming t2=0*C

c. input an expression for the mass of the water melted in one hour using Q1 from above and Lf in the latent heat of fusion.  mw=

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning