A vapor compression refrigeration cycle operates at steady flow conditions with 0.25 kg/s or R-134a. The table below shows some of the operating parameters and properties for the refrigerant. The compressor is réfrigerated, and the condenser is also cooled with water. The compressor receives shaft power equivalent to 7.5 hp. Neglecting changes in kinetic and potential energy changes and any heat loss between devices, please answer the following. a. Complete the table below and sketch the cycle processes on a T-s diagram. When completing the table please use the same number of decimal places as in the tables. b. Determine the cooling capacity of the refrigeration unit, in Tons (1 refrigeration Ton = 211 kJ/min). c. Compute the COP. d. Determine the volume flow rate of refrigerant entering the condenser in L/min. e. Determine the mass flow rate of cooling water passing through the condenser 1. Determine the heat transfer rate from the compressor. g. Compute the rate of entropy generation in the condenser. h. Compute the rate of entropy generation in the expansion valve. 1 2 State P T h (kPa) (°C) (kJ/kg) 400 15 1200 50 S (kJ/kg- K) Water Qout

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter45: Domestic Refrigerators And Freezers
Section: Chapter Questions
Problem 2RQ: The operating condition for the single compressor in a household refrigerator is the lowest box...
icon
Related questions
Question
A vapor compression refrigeration cycle operates at steady flow conditions with 0.25
kg/s or R-134a. The table below shows some of the operating parameters and
properties for the refrigerant. The compressor is réfrigerated, and the condenser is also
cooled with water. The compressor receives shaft power equivalent to 7.5 hp.
Neglecting changes in kinetic and potential energy changes and any heat loss between
devices, please answer the following.
a. Complete the table below and sketch the cycle processes on a T-s diagram.
When completing the table please use the same number of decimal places as in
the tables.
b.
123456
Determine the cooling capacity of the refrigeration unit, in Tons (1 refrigeration
Ton=211 kJ/min).
c. Compute the COP
d. Determine the volume flow rate of refrigerant entering the condenser in L/min.
e. Determine the mass flow rate of cooling water passing through the condenser.
1. Determine the heat transfer rate from the compressor.
g. Compute the rate of entropy generation in the condenser.
h. Compute the rate of entropy
generation in the expansion valve.
State P
S
T h
(kPa) (°C) (kJ/kg) (kJ/kg-
K)
400
1200
1160 44
400
130
130
8.91
18
26
Compresse
Transcribed Image Text:A vapor compression refrigeration cycle operates at steady flow conditions with 0.25 kg/s or R-134a. The table below shows some of the operating parameters and properties for the refrigerant. The compressor is réfrigerated, and the condenser is also cooled with water. The compressor receives shaft power equivalent to 7.5 hp. Neglecting changes in kinetic and potential energy changes and any heat loss between devices, please answer the following. a. Complete the table below and sketch the cycle processes on a T-s diagram. When completing the table please use the same number of decimal places as in the tables. b. 123456 Determine the cooling capacity of the refrigeration unit, in Tons (1 refrigeration Ton=211 kJ/min). c. Compute the COP d. Determine the volume flow rate of refrigerant entering the condenser in L/min. e. Determine the mass flow rate of cooling water passing through the condenser. 1. Determine the heat transfer rate from the compressor. g. Compute the rate of entropy generation in the condenser. h. Compute the rate of entropy generation in the expansion valve. State P S T h (kPa) (°C) (kJ/kg) (kJ/kg- K) 400 1200 1160 44 400 130 130 8.91 18 26 Compresse
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 57 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning