) An electric dipole consists of 0.003 kg spheres charged to ∓3e-09 C at the ends of a 0.16 m long non-conducting rod of mass 0.006 kg (don't try to look up "electric dipole", it won’t help you. For the sake of this problem, it is just a fancy word for what I just described). The dipole rotates on a frictionless pivot at its center. The dipole is held perpendicular to a uniform electric field with a field strength 1000 V/m, then released. i.What is the dipole's angular velocity (in rad/s) at the instant it is aligned with the electric field? (HINT: Look up the moment of inertia of the rotating rod about its center and don't forget the rotational kinetic energy term (along with the other terms) when you set up your conservation of energy problem). a)0.0534 b)0.446 c)0.289 d)0.119 e)0.137 f)0.205

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter19: Electric Forces And Electric Fields
Section: Chapter Questions
Problem 6P
icon
Related questions
Question

(c) An electric dipole consists of 0.003 kg spheres charged to ∓3e-09 C at the ends of a 0.16 m long non-conducting rod of mass 0.006 kg (don't try to look up "electric dipole", it won’t help you. For the sake of this problem, it is just a fancy word for what I just described). The dipole rotates on a frictionless pivot at its center. The dipole is held perpendicular to a uniform electric field with a field strength 1000 V/m, then released.

i.What is the dipole's angular velocity (in rad/s) at the instant it is aligned with the electric field? (HINT: Look up the moment of inertia of the rotating rod about its center and don't forget the rotational kinetic energy term (along with the other terms) when you set up your conservation of energy problem).
a)0.0534 b)0.446 c)0.289 d)0.119 e)0.137 f)0.205


(d) Four 1.9e-08 C charges are held in location to form a perfect square with sides of length 0.1 m. Two of the charges from opposing corners are released simultaneously, the other two are held in place. The mass of each charge is 0.003 kg..

i.How fast (in m/s) will the two released charges be moving when they are far, far away from their original location?
a)0.339 b)0.476 c)0.226 d)0.196 e)0.0881f) 0.736
 
Please answer question c) part i and question d part i... Thanks
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Electric field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning