c) The Bohr model of the atom postulated electrons orbiting around the nucleus in stable orbits. De Broglie explained what orbits could exist by postulating that electrons (and any- thing else) with momentum p have an associated wavelength λ, given by λ = h/p where h is Planck's constant. i) For an electron orbiting around a proton (the Bohr model), equating the centripetal force with the Coulomb force gives the expression v² = e²/(4πmer). Calculate the speed of an electron orbiting at the Bohr radius, rB 0.053 nm. = ii) Calculate the momenta and the de Broglie wavelengths of the electron of part (i) and of a bird (a racing pigeon) that weighs 0.350 kg and flies at 100 km per hour. iii) Compare the wavelength for the electron that you obtain in (ii) with the circumference of the orbit. Comment on this comparison. Explain briefly what it implies about the other possible orbits of the Bohr model and how the higher orbits might be predicted.

Modern Physics
3rd Edition
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Chapter4: The Particle Nature Of Matter
Section: Chapter Questions
Problem 39P
icon
Related questions
Question
c) The Bohr model of the atom postulated electrons orbiting around the nucleus in stable
orbits. De Broglie explained what orbits could exist by postulating that electrons (and any-
thing else) with momentum p have an associated wavelength λ, given by λ = h/p where h
is Planck's constant.
i)
For an electron orbiting around a proton (the Bohr model), equating the centripetal
force with the Coulomb force gives the expression v² = e²/(4πmer). Calculate the
speed of an electron orbiting at the Bohr radius, rB
0.053 nm.
=
ii) Calculate the momenta and the de Broglie wavelengths of the electron of part (i) and
of a bird (a racing pigeon) that weighs 0.350 kg and flies at 100 km per hour.
iii) Compare the wavelength for the electron that you obtain in (ii) with the circumference
of the orbit. Comment on this comparison. Explain briefly what it implies about the
other possible orbits of the Bohr model and how the higher orbits might be predicted.
Transcribed Image Text:c) The Bohr model of the atom postulated electrons orbiting around the nucleus in stable orbits. De Broglie explained what orbits could exist by postulating that electrons (and any- thing else) with momentum p have an associated wavelength λ, given by λ = h/p where h is Planck's constant. i) For an electron orbiting around a proton (the Bohr model), equating the centripetal force with the Coulomb force gives the expression v² = e²/(4πmer). Calculate the speed of an electron orbiting at the Bohr radius, rB 0.053 nm. = ii) Calculate the momenta and the de Broglie wavelengths of the electron of part (i) and of a bird (a racing pigeon) that weighs 0.350 kg and flies at 100 km per hour. iii) Compare the wavelength for the electron that you obtain in (ii) with the circumference of the orbit. Comment on this comparison. Explain briefly what it implies about the other possible orbits of the Bohr model and how the higher orbits might be predicted.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning