Here's a weird way to describe the structure of copper: Cu falls into the tetragonal crystal system with a = 0.256 nm, c = 0.362 nm = a√√2, and atoms located at 000 and 11. Its density is 8.94 g/cc at room 222* temperature. (a) Draw a few adjacent units cells of the structure as described in this "weird" way. You should be able to see that there is a much more convenient way to describe the structure. What is it? (The point I wish to make is that there are many different unit cells that can be used to describe any given crystal, so we usually choose the one that is easiest to visualize.) (b) Calculate the radius of a copper atom using the above information. (c) Calculate the lattice parameter of the "better" unit cell of Cu.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
3 Copper Unit Cell Uniqueness
Here's a weird way to describe the structure of copper: Cu falls into the tetragonal crystal system with
a = 0.256 nm, c = 0.362 nm = a√√2, and atoms located at 000 and. Its density is 8.94 g/cc at room
temperature.
(a) Draw a few adjacent units cells of the structure as described in this "weird" way. You should be able
to see that there is a much more convenient way to describe the structure. What is it? (The point I
wish to make is that there are many different unit cells that can be used to describe any given crystal,
so we usually choose the one that is easiest to visualize.)
(b) Calculate the radius of a copper atom using the above information.
(c) Calculate the lattice parameter of the "better" unit cell of Cu.
Transcribed Image Text:3 Copper Unit Cell Uniqueness Here's a weird way to describe the structure of copper: Cu falls into the tetragonal crystal system with a = 0.256 nm, c = 0.362 nm = a√√2, and atoms located at 000 and. Its density is 8.94 g/cc at room temperature. (a) Draw a few adjacent units cells of the structure as described in this "weird" way. You should be able to see that there is a much more convenient way to describe the structure. What is it? (The point I wish to make is that there are many different unit cells that can be used to describe any given crystal, so we usually choose the one that is easiest to visualize.) (b) Calculate the radius of a copper atom using the above information. (c) Calculate the lattice parameter of the "better" unit cell of Cu.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 7 images

Blurred answer
Knowledge Booster
Principal Metallic Crystal Structures and Crystal Structure Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY