The block in the figure lies on a horizontal frictionless surface, and the spring constant is 42 N/m. Initially, the spring is at its relaxed length and the block is stationary at position x = 0. Then an applied force with a constant magnitude of 3.0 N pulls the block in the positive direction of the x axis, stretching the spring until the block stops. When that stopping point is reached, what are (a) the position of the block, (b) the work that has been done on the block by the applied force, and (c) the work that has been done on the block by the spring force? During the block's displacement, what are (d) the block's position when its kinetic energy is maximum and (e) the value of that maximum kinetic energy?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter6: Energy Of A System
Section: Chapter Questions
Problem 3P: A block of mass m = 2.50 kg is pushed a distance d = 2.20 m along a frictionless, horizontal table...
icon
Related questions
icon
Concept explainers
Question
100%
The block in the figure lies on a horizontal frictionless surface, and the spring constant is 42 N/m. Initially, the spring is at its relaxed
length and the block is stationary at position x = 0. Then an applied force with a constant magnitude of 3.0 N pulls the block in the
positive direction of the x axis, stretching the spring until the block stops. When that stopping point is reached, what are (a) the
position of the block, (b) the work that has been done on the block by the applied force, and (c) the work that has been done on the
block by the spring force? During the block's displacement, what are (d) the block's position when its kinetic energy is maximum and (e)
the value of that maximum kinetic energy?
x=0
Ę = 0
0000000
Block
attached
to spring
(a) Number
Units
(b) Number
Units
(c) Number
Units
(d) Number
Units
(e) Number
Units
X
>
>
>
Transcribed Image Text:The block in the figure lies on a horizontal frictionless surface, and the spring constant is 42 N/m. Initially, the spring is at its relaxed length and the block is stationary at position x = 0. Then an applied force with a constant magnitude of 3.0 N pulls the block in the positive direction of the x axis, stretching the spring until the block stops. When that stopping point is reached, what are (a) the position of the block, (b) the work that has been done on the block by the applied force, and (c) the work that has been done on the block by the spring force? During the block's displacement, what are (d) the block's position when its kinetic energy is maximum and (e) the value of that maximum kinetic energy? x=0 Ę = 0 0000000 Block attached to spring (a) Number Units (b) Number Units (c) Number Units (d) Number Units (e) Number Units X > > >
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Potential energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning