The suction fan of a building heating system draws ambient air at 100 kPa and 30 °C into a duct of 0.8 m inlet diameter with a mass flow rate of 1.65 kg/s. Within the duct, the air gets heated by a 25.0 kW heater and flows into a manifold with discharge outlet 1 and outlet 2, each of 0.5 m in diameter. A damper is fitted to outlet 2 to adjust the flow area and regulate the air discharge through it. The air temperature and pressure at each outlet are 65 °C and 116 kPa, respectively. The elevation difference between the air inlet and the outlets is negligible. It is given that the entire duct and manifold assembly is perfectly insulated. The air is to be treated as an ideal gas with Co=1.005 kJ/kg.K and R=0.287 kl/kg.K.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
4 The suction fan of a building heating system draws ambient air at 100 kPa and 30 °C into
a duct of 0.8 m inlet diameter with a mass flow rate of 1.65 kg/s. Within the duct, the air
gets heated by a 25.0 kW heater and flows into a manifold with discharge outlet 1 and
outlet 2, each of 0.5 m in diameter. A damper is fitted to outlet 2 to adjust the flow area
and regulate the air discharge through it. The air temperature and pressure at each
outlet are 65 °C and 116 kPa, respectively. The elevation difference between the air
inlet and the outlets is negligible. It is given that the entire duct and manifold assembly
is perfectly insulated. The air is to be treated as an ideal gas with C=1.005 kJ/kg.K and
R=0.287 ki/kg.K.
(a) Find the air velocities at the inlet and the two discharge outlets of the heating
system with the outlet 2 damper fully open.
(b) Calculate the fan power consumption.
Transcribed Image Text:4 The suction fan of a building heating system draws ambient air at 100 kPa and 30 °C into a duct of 0.8 m inlet diameter with a mass flow rate of 1.65 kg/s. Within the duct, the air gets heated by a 25.0 kW heater and flows into a manifold with discharge outlet 1 and outlet 2, each of 0.5 m in diameter. A damper is fitted to outlet 2 to adjust the flow area and regulate the air discharge through it. The air temperature and pressure at each outlet are 65 °C and 116 kPa, respectively. The elevation difference between the air inlet and the outlets is negligible. It is given that the entire duct and manifold assembly is perfectly insulated. The air is to be treated as an ideal gas with C=1.005 kJ/kg.K and R=0.287 ki/kg.K. (a) Find the air velocities at the inlet and the two discharge outlets of the heating system with the outlet 2 damper fully open. (b) Calculate the fan power consumption.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Fluid Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY