Problem description: In a car security system, we usually want to connect the siren in such a way that the siren will activate when it is triggered by one or more sensors. In addition, there will be a master switch to turn the system on or off. Let us assume that there is a car door switch D, a vibration detector switch V, and the master switch M. We will use the convention that when the door is opened D = 1, otherwise, D = 0. Similarly, when the car is being shaken, V = 1, otherwise, V = 0. Thus, we want the siren S to turn on, that is, set S = 1, when either D = 1 or V = 1, or when both D = 1and V = 1, but only for when the system is turned on, that is when M = 1. However, when we turn off the system, and either enter or drive the car, we do not want the siren to turn on. Hence, when M = 0, it does not matter what values D and V have, the siren should remain off.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
100%

Problem description:

In a car security system, we usually want to connect the siren in such a way that the siren will activate when it is triggered by one or more sensors. In addition, there will be a master switch to turn the system on or off. Let us assume that there is a car door switch D, a vibration detector switch V, and the master switch M. We will use the convention that when the door is opened = 1, otherwise, = 0. Similarly, when the car is being shaken, = 1, otherwise, = 0. Thus, we want the siren to turn on, that is, set = 1, when either = 1 or = 1, or when both = 1and = 1, but only for when the system is turned on, that is when = 1. However, when we turn off the system, and either enter or drive the car, we do not want the siren to turn on. Hence, when = 0, it does not matter what values and have, the siren should remain off.

 

Instruction:

Start by constructing a truth table, which is basically a precise way of stating the operations for the device. The table should have three input columns MD, and V, and an output column S. The values under the column can be obtained from interpreting the description of when we want the siren to turn on. When = 0, we don’t want the siren to come on, regardless of what the values for and are. When = 1, we want the siren to come on when either or both and is a 1. From the table, formulate the logic expression then construct the equivalent logic diagram.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,