Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 1, Problem 13P
To determine

The radius of a solid aluminum sphere that balance a solid iron sphere on an equal arm balance.

Expert Solution & Answer
Check Mark

Answer to Problem 13P

The radius of a solid aluminum sphere is 2.86cm that balance a solid iron sphere on an equal arm balance.

Explanation of Solution

Section 1:

To determine: The density of the aluminum sphere.

Answer: The density of the aluminum sphere is 2.70×103kg/m3 .

Given information:

The mass of one cubic meter aluminum is 2.70×103kg and the mass of one cubic meter iron is 7.86×103kg . The radius of the solid iron sphere is 2.0cm .

Formula to calculate the density of aluminum sphere is,

ρalu=m1V1

  • ρalu is the density of the aluminum sphere.
  • m1 is the mass of one cubic meter aluminum sphere.
  • V1 is the volume of the aluminum sphere.

Substitute 2.70×103kg for m1 and 1.0m3 for V1 to find ρalu .

ρalu=2.70×103kg1.0m3=2.70×103kg/m3

Section 2:

To determine: The density of the iron sphere.

Answer: The density of the iron sphere is 7.86×103kg/m3 .

Given information:

The mass of one cubic meter aluminum is 2.70×103kg and the mass of one cubic meter iron is 7.86×103kg . The radius of the solid iron sphere is 2.0cm .

Formula to calculate the density of iron sphere is,

ρiron=m2V2

  • ρiron is the density of the iron sphere.
  • m2 is the mass of one cubic meter iron sphere.
  • V2 is the volume of the iron sphere.

Substitute 7.86×103kg for m1 and 1.0m3 for V1 to find ρiron .

ρiron=7.86×103kg1.0m3=7.86×103kg/m3

Section 3:

To determine: The radius of a solid aluminum sphere that balance a solid iron sphere on an equal arm balance.

Answer: The radius of a solid aluminum sphere is 2.86cm that balance a solid iron sphere on an equal arm balance.

Given information:

The mass of one cubic meter aluminum is 2.70×103kg and the mass of one cubic meter iron is 7.86×103kg . The radius of the solid iron sphere is 2.0cm .

Formula to calculate the mass of a aluminum sphere is,

malu=ρaluValu

Formula to calculate the volume of a aluminum sphere is,

Valu=43πralu3

  • ralu is the radius of the aluminum sphere.

Substitute 43πralu3 for Valu .

malu=ρalu43πralu3=43πralu3ρalu (I)

Formula to calculate the mass of a solid iron sphere of radius 2.0cm is,

miron=ρironViron

Formula to calculate the volume of iron sphere is,

Viron=43πriron3

  • riron is the radius of the iron sphere.

Substitute 43πriron3 for Viron .

miron=ρiron43πriron3=43πriron3ρiron (II)

Since both sphere must balance to each other on an equal arm balance. So, they both have equal mass.

Equating equation (I) and equation (II),

malu=miron43πralu3ρalu=43πriron3ρironralu3ρalu=riron3ρironralu=ρironρalu3riron

Substituting 2.0cm for riron , 7.86×103kg/m3 for ρiron and 2.70×103kg/m3 for ρalu to find ralu .

ralu=(7.86×103kg/m32.70×103kg/m33)(2.0cm)=1.427×2.0cm=2.86cm

Conclusion:

Therefore, the radius of a solid aluminum sphere is 2.86cm that balance a solid iron sphere on an equal arm balance.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A uniform silver sphere and a uniform gold sphere have the same mass. What is the ratio of the radius of the silver sphere to the radius of the gold sphere?
An automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 10✕103 kg/m3. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.660 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 21.4 cm. What is the moment of inertia (in kg · m2) of the tire about an axis perpendicular to the page through its center?
One cubic meter (1.00 m3) of aluminum has a mass of 2.70 x 103 kg, and the same volume of iron has a mass of 7.86 x 103 kg. Find the radius of a solid aluminum sphere that will balance a solid iron sphere of radius 2.00 cm on anequal-arm balance.

Chapter 1 Solutions

Physics for Scientists and Engineers with Modern Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning