Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 31, Problem 63P
To determine

The temperature of the 1.00% population of photons.

Blurred answer
Students have asked these similar questions
Astronomers can determine the heat of various areas of the universe by making observations about energy they emit. Gamma rays can be found in areas where there is a lot of star formation occurring. What would you guess about the temperature of these areas? Explain why.Do you think there would be a lot of particles present? Explain why.
1. The current (critical) density of our universe is pe = 10-26kg/m³. Assume the universe is filled with cubes with equal size that each contain one person of m = 100kg. What would the length of the side of such a cube have to be in order to give the correct critical density? How many hydrogen atoms would you need in a box of 1 m³ to reach the critical density? The matter we know, which consists mostly of hydrogen, constitutes only 4.8% of the current critical energy density of our universe. So how many hydrogen atoms are actually in a box of 1 m3 in our universe? Deep space is very empty and a much better vacuum than we can obtain on earth in a laboratory.
Problem 2: Black hole – the ultimate blackbody A black hole emits blackbody radiation called Hawking radiation. A black hole with mass M has a total energy of Mc², a surface area of 167G²M² /c*, and a temperature of hc³/167²KGM. a) Estimate the typical wavelength of the Hawking radiation emitted by a 1 solar mass black hole (2 × 103ºkg). Compare your answer to the size of the black hole. b) Calculate the total power radiated by a one-solar mass black hole. c) Imagine a black hole in empty space, where it emits radiation but absorbs nothing. As it loses energy, its mass must decrease; one could say "evaporates". Derive a differential equation for the mass as a function of time, and solve to obtain an expression for the lifetime of a black hole in terms of its mass.

Chapter 31 Solutions

Principles of Physics: A Calculus-Based Text

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
  • Text book image
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
    Text book image
    College Physics
    Physics
    ISBN:9781938168000
    Author:Paul Peter Urone, Roger Hinrichs
    Publisher:OpenStax College
  • Text book image
    University Physics Volume 3
    Physics
    ISBN:9781938168185
    Author:William Moebs, Jeff Sanny
    Publisher:OpenStax
    Text book image
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Text book image
    Astronomy
    Physics
    ISBN:9781938168284
    Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
    Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax