Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 35, Problem 4P
To determine

The value of force constant for entire spring.

Blurred answer
Students have asked these similar questions
Atoms vibrate relative to one another in molecules with the bond acting as a spring. Consider the H – CI bond, where the heavy Cl atom forms a stationary anchor for the very light H atom. That is, only the H atom moves, vibrating as a simple harmonic oscillator. (a) Give the equation that describes the allowed vibrational energy levels of the bond. (b) The force constant kf for the H – Cl bond is 516.3 N m'1. Given the mass of H equal to 1.7 x 1027 kg, determine the difference in energy (separation) between adjacent energy levels. (c) Calculate the zero-point energy of this molecular oscillator.
What is the minimum energy required to go from one vibrational state to the next higher vibrational state for a molecule whose vibrations are modeled by a harmonic oscillator?
The greenhouse-gas carbon dioxide molecule CO2 strongly absorbs infrared radiation when its vibrational normal modes are excited by light at the normal-mode frequencies. CO₂ is a linear triatomic molecule, as shown in (Figure 1), with oxygen atoms of mass mo bonded to a central carbon atom of mass mc. You know from chemistry that the atomic masses of carbon and oxygen are, respectively, 12 and 16. Assume that the bond is an ideal spring with spring constant k. There are two normal modes of this system for which oscillations take place along the axis. (You can ignore additional bending modes.) In this problem, you will find the normal modes and then use experimental data to determine the bond spring constant. Figure O 1 mo 1x₁ 2 mc 1 of 1 3 mo 1Xz Part A Let x₁, x2, and 3 be the atoms' positions measured from their equilibrium positions. First, use Hooke's law to write the net force on each atom. Pay close attention to signs! For each oxygen, the net force equals mod²x/dt². Carbon has a…
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax