Solid Waste Engineering
Solid Waste Engineering
3rd Edition
ISBN: 9781305635203
Author: Worrell, William A.
Publisher: Cengage Learning,
bartleby

Concept explainers

Question
Book Icon
Chapter 5, Problem 5.13P
To determine

(a)

The recovery of plastic B in the overflow.

Expert Solution
Check Mark

Answer to Problem 5.13P

The recovery of plastic B in the overflow is 92.1% .

Explanation of Solution

Given:

The feed rate is 38kg/h .

The overflow rate is 35kg/h .

Concept Used:

Write the equation to calculate percentage of recovery

  PRB=(x1x2)×100   ...... (I).

Here, the percentage of recovery of plastic B is PRB , overflow rate is x1 and the feed rate is x2 .

Calculation:

Calculate the percentage of recovery of plastic B.

Substitute for 35kg/h

  x1 and 38kg/h for x2 in Equation (I).

  PRB=( 35 kg/h 38 kg/h )×100=0.921×100=92.1%

Conclusion:

Thus, the recovery of plastic B in the overflow is 92.1% .

To determine

(b)

The purity of plastic B in the overflow.

Expert Solution
Check Mark

Answer to Problem 5.13P

The purity of plastic B in the overflow is 60.3% .

Explanation of Solution

Given:

The overflow rate of plastic A is 5kg/h .

The overflow rate of plastic B is 35kg/h .

The overflow rate of plastic C is 18kg/h .

Concept Used:

Write the equation to calculate percentage of purity.

  PPB=(x1x1+y1+z1)×100   ...... (II).

Here, the percentage of recovery of plastic B is PPB , overflow rate of plastic A, B and C are x1 , y1 and z1 respectively.

Calculation:

Calculate the percentage of purity of plastic B.

Substitute 35kg/h for x1 , 5kg/h for y1 and 18kg/h for z1 in Equation (II).

  PPB=( 35 kg/h ( 35+5+18 ) kg/h )×100=0.603×100=60.3% .

Conclusion:

Thus, the purity of plastic B in the overflow is 60.3% .

To determine

(c)

The time taken by the plastic B to reach the top.

Expert Solution
Check Mark

Answer to Problem 5.13P

The time taken by plastic B to reach the top is 220.19s .

Explanation of Solution

Given:

The density of fluid is 1.2gm/cm3 .

The viscosity of fluid is 0.015poise .

The diameter of plastic is 0.5mm .

The distance is 2m .

The density of material is 1.1gm/cm3 .

Concept Used:

Write the equation to calculate the time taken.

  t=Lv   ...... (III).

Here, the time is t , distance is L , and terminal velocity is v .

Calculation:

Calculate the terminal velocity by using Stock’s Law.

  v=d2g(ρρs)18μ   ...... (IV).

Here, the diameter of particle is d , the acceleration due to gravity is g , the density of fluid is ρ , the density of material is ρs , and the viscosity of the fluid is μ .

Calculate the terminal velocity.

Convert the unit of viscosity from poise to kg/m/s .

  μ=(0.015poise)( 0.1 kg/ m/s 1poise)=1.5×103kg/m/s

Substitute 0.5×103m for d , 9.81m/s2 for g , 1.2×103kg/m3 for ρ , 1.1×103kg/m3 for ρs and 1.5×103kg/m/s for μ in Equation (IV).

  v= ( 0.5× 10 3 m )2×9.81m/ s 2×( 1.2× 10 3 kg/ m 3 1.1× 10 3 kg/ m 3 )( 18×1.5× 10 3 kg/ m/s )=2.4525× 10 4kg/ s 20.027kg/m/s=9.083×103m/s

Calculate the time taken by the plastic B to reach the top.

Substitute 9.083×103m/s for v and 2m for L in Equation (III).

  t=2m9.083× 10 3m/s=220.19s

Conclusion:

Thus, the time taken by plastic B to reach the top is 220.19s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The nutural frequancy for the system is equal to k rigid uniform bar of mass (m) P b L 1 3kb2+PL 1 3kb2 mL? 2n The answer is O The Answer is 3kb²–3PL 2n V None of All mL? The Answer is O the answer is 3kb2+3PL mL? 1 the Answer is
In a given setup, distilled water flows towards the inside and goes outside of the vessel as shown in the figure. What is the rate of change of the water's mass (dm/dt) in the vessel? 3 in. Q = 0.3 ft3/sec V = 30 ft/sec Device m = 0.3 slug/sec %3D
Determine the volume of the solid in the pipe shown in the figure below. Show complete solution with correct labels. 8mm 4 mm 18 mm
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,