Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
10th Edition
ISBN: 9780073398204
Author: Richard G Budynas, Keith J Nisbett
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 20P

A beam subjected to axial loading will experience an axial stress, σa. If in addition, the beam is subjected to a bending load, a bending stress, σb, will also occur at the outer fibers of the beam. The maximum stress at the outer fibers of the beam will be σmax = σa + σb. Assume that σa and σb are independent and σ a ¯  = 90 MPa,  σ ^ σ a  = 8 .4 MPa , σ b ¯  = 383 MPa,  σ ^ σ b  = 22 .3 MPa . The rod is made of a steel with S y ¯  = 553 MPa and σ ^ S y  = 42 .7 MPa . Assuming the strength and load have normal distributions, determine the design factor and the reliability guarding against yielding.

Blurred answer
Students have asked these similar questions
5. A 4-point bending test is performed on a beam of length L = 1 m. A load of P = 2000 N is applied across two loading points a distance a = 0.4 m from the sides of the beam. If the beam has a radius of r = 1 cm and a yield strength of σ = 250 MPa, does the bar yield? If it's an elastic-perfectly plastic material, does it fail all the way through the thickness of the bar? What would the yield strength of the material need to be if we wanted a factor of safety of 1.5?
M = 2. A beam of length 10 m and of uniform rectangular section is supported at its ends and carries uniformly distributed load over the entire length. Calculate the depth of the section if the maximum permissible bending stress is 16 N/mm² and central deflection is not to exceed 10 mm. Take the value of E = 1.2 × 104 N/mm². Use the following g equations: w.L² 8 ус W.L 161 8 d = 2 W.L 8 == WL³ 5 384 ΕΙ (: W = w.L)
A beam with a half-circular cross-section with radius R = 1.7 in is subjected to a maximum positive bending moment of 25700 lb*in about a horizontal axis. Determine the maximum tensile and compressive flexural stress in the beam. Denote a tensile stress with a positive number, and a compressive stress with a negative number. psi o max 6 maxc - = R psi

Chapter 1 Solutions

Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Solids: Lesson 53 - Slope and Deflection of Beams Intro; Author: Jeff Hanson;https://www.youtube.com/watch?v=I7lTq68JRmY;License: Standard YouTube License, CC-BY