Modern Physics
Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 5P

(a)

To determine

The general relationship between temperature and λmax .

(b)

To determine

The numerical value for the Wien’s constant.

Blurred answer
Students have asked these similar questions
Consider a black body of surface area 22.0 cm² and temperature 5700 K. (a) How much power does it radiate? 131675.5 W (b) At what wavelength does it radiate most intensely? 508.421 nm (c) Find the spectral power per wavelength at this wavelength. Remember that the Planck intensity is "intensity per unit wavelength", with units of W/m³, and "power per unit wavelength" is equal to that intensity times the surface area, with units of W/m 131.5775 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. W/m
Prior to Planck’s derivation of the distribution law for black-body radiation, Wien found empirically a closely related distribution function which is very nearly but not exactly in agreement with the experimental results, namely ρ(λ,T) = (a/λ5)e−b/λkT. This formula shows small deviations from Planck’s at long wavelengths. (a) Find a form of the Planck distribution which is appropriate for short wavelengths (Hint: consider the behaviour of the term ehc/λkT - 1 in this limit). (b) Compare your expression from (a) with Wien’s empirical formula and hence determine the constants a and b. (c) Integrate Wien’s empirical expression for ρ(λ,T) over all wavelengths and show that the result is consistent with the Stefan–Boltzmann law (Hint: to compute the integral use the substitution x = hc/λkT and then refer to the Resource section). (d) Show that Wien’s empirical expression is consistent with Wien’s law.
The energy density distribution function in terms of frequency for blackbody radiation is described by the formula Planck derived, given as: p(v,T) = c3 exp(hu/kT)-1 Specify what each of the parameters or variables (i.e. {h, c, k, v,T}) are called in this equation. You may have to look this up, since we did not cover this in the lectures or book. What is the dimension of h? Sketch what this distribution function looks like as a function of v. You can do this with information given.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON