Principles of Instrumental Analysis
Principles of Instrumental Analysis
7th Edition
ISBN: 9781305577213
Author: Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher: Cengage Learning
Question
Book Icon
Chapter 2, Problem 2.14QAP
Interpretation Introduction

(a)

Interpretation:

The time it would take to discharge a 0.025 µF capacitor to 1% of its full charge through a resistance of 10 Mχ should be calculated.

Concept introduction:

The product of RC is referred to as time constant for the circuitand is a measure of the time required for a capacitor to chargeor discharge.

Capacitor is discharged to 1% of its full charge. Therefore, the value of charge at time ‘t’ can be related to the initial charge by following equation.

θt=1100×θ0

θt = charge after discharge of the capacitor

θ0 = initial charge of the capacitor

Time taken for the discharge of the capacitor can be calculated using following relationship;

θt=θ0 et/RC

Interpretation Introduction

(b)

Interpretation:

The time it would take to discharge a 0.025 µF capacitor to 1% of its full charge through a resistance of 1 Mχ should be calculated.

Concept introduction:

The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.

Capacitor is discharged to 1% of its full charge. Therefore, the value of charge at time ‘t’ can be related to the initial charge by following equation.

θt=1100×θ0

θt = charge after discharge of the capacitor

θ0 = initial charge of the capacitor

Time taken for the discharge of the capacitor can be calculated using following relationship;

θt=θ0 et/RC

Interpretation Introduction

(c)

Interpretation:

The time it would take to discharge a 0.025 µF capacitor to 1% of its full charge through a resistance of 1 kχ should be calculated.

Concept introduction:

The product of RC is referred to as time constant for the circuit and is a measure of the time required for a capacitor to charge or discharge.

Capacitor is discharged to 1% of its full charge. Therefore, the value of charge at time ‘t’ can be related to the initial charge by following equation.

θt=1100×θ0

θt = charge after discharge of the capacitor

θ0 = initial charge of the capacitor

Time taken for the discharge of the capacitor can be calculated using following relationship;

θt=θ0 et/RC

Blurred answer
Students have asked these similar questions
Calculate the effect that increasing the overpotential from 0.50 V to 0.60 V has on the current density in the electrolysis of 1.0 m NaOH(aq), which is 1.22 mA cm−2 at 0.50 V and 25 °C. Take α = 0.50.
The resistance of a 0.008 mol dm-³ solution of NaCl (aq) at 300 K was found to be 2.75 x 10³ . In a separate experiment, using the same conductivity cell, the resistance for a 0.1 mol dm-³ KCI aqueous solution was determined as 125.6 Q. Given that the conductivity of 0.1 mol dm-³ KCl aqueous solution at 300 K is 0.01302 S cm-1, calculate the molar conductivity of the NaCl aqueous solution.
180% + Q1 (a) Read the following sentences carefully and briefly justify the answer: (i) Combustion of Benzene produces carbon rich sooty flame. Standard Hydrogen Electrode (SHE) is used to measure standard potential of electrodes. (ii) (ii) Water boiling in a steel bowl is an open thermodynamic system. (iv) 22.4 liter O2 gas at STP will have 6.023x1023 O2 molecules.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY