Organic Chemistry
Organic Chemistry
6th Edition
ISBN: 9781936221349
Author: Marc Loudon, Jim Parise
Publisher: W. H. Freeman
Question
Book Icon
Chapter 11, Problem 11.62AP
Interpretation Introduction

(a)

Interpretation:

The synthesis of Organic Chemistry, Chapter 11, Problem 11.62AP , additional homework tip  1in enantiomerically pure form from enantiomerically pure Organic Chemistry, Chapter 11, Problem 11.62AP , additional homework tip  2is to be stated.

Concept introduction:

When an allylic alcohol is reacted with enantiomeric tartrate esters, Organic Chemistry, Chapter 11, Problem 11.62AP , additional homework tip  3and ()DET, in presence of titanium (IV) isopropoxide catalyst and tert-butylhydroperoxide, two enantiomeric epoxides are formed. This reaction is known as Sharpless asymmetric epoxidation reaction. The epoxide is formed at the double bond present in the allylic alcohol. The stereochemistry of the enantiomeric epoxide products depends upon the stereochemistry of the tartrate ester, DET, used. The epoxide formed undergoes stereospecific ring opening reactions.

Interpretation Introduction

(b)

Interpretation:

The synthesis of (2R, 3S)-3-methoxybutan-2-one in enantiomerically pure form from enantiomerically pure (2R, 3R)-2, 3-dimethyloxirane is to be stated.

Concept introduction:

When an allylic alcohol is reacted with enantiomeric tartrate esters, (+)DET and ()DET, in presence of titanium (IV) isopropoxide catalyst and tert-butylhydroperoxide, two enantiomeric epoxides are formed. This reaction is known as Sharpless asymmetric epoxidation reaction. The epoxide is formed at the double bond present in the allylic alcohol. The stereochemistry of the enantiomeric epoxide products depends upon the stereochemistry of the tartrate ester, DET, used. The epoxide formed undergoes stereospecific ring opening reactions.

Interpretation Introduction

(c)

Interpretation:

The synthesis of (2R, 3S)-2-ethoxy-3-methoxybutane in enantiomerically pure form from enantiomerically pure (2R, 3R)-2, 3-dimethyloxirane is to be stated.

Concept introduction:

When an allylic alcohol is reacted with enantiomeric tartrate esters, (+)DET and ()DET, in presence of titanium (IV) isopropoxide catalyst and tert-butylhydroperoxide, two enantiomeric epoxides are formed. This reaction is known as Sharpless asymmetric epoxidation reaction. The epoxide is formed at the double bond present in the allylic alcohol. The stereochemistry of the enantiomeric epoxide products depends upon the stereochemistry of the tartrate ester, DET, used. The epoxide formed undergoes stereospecific ring opening reactions.

Interpretation Introduction

(d)

Interpretation:

The synthesis of (2S, 3R)-2-ethoxy-3-methoxybutane in enantiomerically pure form from enantiomerically pure (2R, 3R)-2, 3-dimethyloxirane is to be stated.

Concept introduction:

When an allylic alcohol is reacted with enantiomeric tartrate esters, (+)DET and ()DET, in presence of titanium (IV) isopropoxide catalyst and tert-butylhydroperoxide, two enantiomeric epoxides are formed. This reaction is known as Sharpless asymmetric epoxidation reaction. The epoxide is formed at the double bond present in the allylic alcohol. The stereochemistry of the enantiomeric epoxide products depends upon the stereochemistry of the tartrate ester, DET, used. The epoxide formed undergoes stereospecific ring opening reactions.

Blurred answer
Students have asked these similar questions
11:43 Q1. (a) (c) (d) (b) Two stereoisomers of but-2-ene are formed when 2-bromobutane reacts with ethanolic potassium hydroxide. (i) Explain what is meant by the term stereoisomers. Library Name and outline a mechanism for the reaction of 2-bromo-2-methylpropane with ethanolic potassium hydroxide to form the alkene 2-methylpropene, (CH3)2C=CH₂ Name of mechanism Mechanism (ii) Draw the structures and give the names of the two stereoisomers of but-2-ene. Stereoisomer 1 Name (iii) Name this type of stereoisomerism. Select Name Stereoisomer 2 When 2-bromo-2-methylpropane reacts with aqueous potassium hydroxide, 2-methylpropan-2-ol is formed as shown by the following equation. CH3 H₂C-C-CH3 + KOH Br Page 2 of 14 CH3 H3C-C-CH3 + KBr ОН State the role of the hydroxide ions in this reaction. Write an equation for the reaction that occurs when CH3CH₂CH₂CH₂Br reacts with an excess of ammonia. Name the organic product of this reaction. Equation Name of product 9,284 Photos, 1,166 Videos For You…
Starting exactly with any acid chloride with exactly with 5 carbon atoms, and using appropriate reagents outline the synthesis of the following molecules: (a) 2,6-dimethyl-4-heptanone (b) 4-propyl-4-octanol
Rank the compounds in each of the following groups in order of their reactivity to electrophilic substitution: (a) Nitrobenzene, phenol, toluene, benzene (b) Phenol, benzene, chlorobenzene, benzoic acid (c) Benzene, bromobenzene, benzaldehyde, aniline

Chapter 11 Solutions

Organic Chemistry

Ch. 11 - Prob. 11.11PCh. 11 - Prob. 11.12PCh. 11 - Prob. 11.13PCh. 11 - Prob. 11.14PCh. 11 - Prob. 11.15PCh. 11 - Prob. 11.16PCh. 11 - Prob. 11.17PCh. 11 - Prob. 11.18PCh. 11 - Prob. 11.19PCh. 11 - Prob. 11.20PCh. 11 - Prob. 11.21PCh. 11 - Prob. 11.22PCh. 11 - Prob. 11.23PCh. 11 - Prob. 11.24PCh. 11 - Prob. 11.25PCh. 11 - Prob. 11.26PCh. 11 - Prob. 11.27PCh. 11 - Prob. 11.28PCh. 11 - Prob. 11.29PCh. 11 - Prob. 11.30PCh. 11 - Prob. 11.31PCh. 11 - Prob. 11.32PCh. 11 - Prob. 11.33PCh. 11 - Prob. 11.34PCh. 11 - Prob. 11.35PCh. 11 - Prob. 11.36PCh. 11 - Prob. 11.37PCh. 11 - Prob. 11.38PCh. 11 - Prob. 11.39PCh. 11 - Prob. 11.40PCh. 11 - Prob. 11.41PCh. 11 - Prob. 11.42PCh. 11 - Prob. 11.43PCh. 11 - Prob. 11.44APCh. 11 - Prob. 11.45APCh. 11 - Prob. 11.46APCh. 11 - Prob. 11.47APCh. 11 - Prob. 11.48APCh. 11 - Prob. 11.49APCh. 11 - Prob. 11.50APCh. 11 - Prob. 11.51APCh. 11 - Prob. 11.52APCh. 11 - Prob. 11.53APCh. 11 - Prob. 11.54APCh. 11 - Prob. 11.55APCh. 11 - Prob. 11.56APCh. 11 - Prob. 11.57APCh. 11 - Prob. 11.58APCh. 11 - Prob. 11.59APCh. 11 - Prob. 11.60APCh. 11 - Prob. 11.61APCh. 11 - Prob. 11.62APCh. 11 - Prob. 11.63APCh. 11 - Prob. 11.64APCh. 11 - Prob. 11.65APCh. 11 - Prob. 11.66APCh. 11 - Prob. 11.67APCh. 11 - Prob. 11.68APCh. 11 - Prob. 11.69APCh. 11 - Prob. 11.70APCh. 11 - Prob. 11.71APCh. 11 - Prob. 11.72APCh. 11 - Prob. 11.73APCh. 11 - Prob. 11.74APCh. 11 - Prob. 11.75APCh. 11 - Prob. 11.76APCh. 11 - Prob. 11.77APCh. 11 - Prob. 11.78APCh. 11 - Prob. 11.79APCh. 11 - Prob. 11.80APCh. 11 - Prob. 11.81AP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning